

Synthesis and Magnetic Properties of a New Prussian Blue Analog Composed of $K_{0.9}Mn^{II}_{1.05}[Mo^I(CN)_5(NO)] \cdot 5H_2O \cdot 1.9MeOH$

Naoko Machida,[†] Shin-ichi Ohkoshi,[†] Zhuang J. Zhong,^{††} and Kazuhito Hashimoto^{*†,††}

[†]Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904

^{††}Kanagawa Academy of Science and Technology, 3-2-1 Sakato, Takatsu-ku, Kawasaki, Kanagawa 213-0012

(Received May 28, 1999; CL-990442)

We have prepared a new molybdenum polycyanide $K_{0.9}Mn^{II}_{1.05}[Mo^I(CN)_5(NO)] \cdot 5H_2O \cdot 1.9MeOH$ with a face-centered cubic structure with a lattice constant of 10.72 Å. This compound exhibited a spontaneous magnetization with a Curie temperature of 39 K and a saturated magnetization value (I_s) of 3.8 μ_B . This I_s value and magnetic susceptibility measurements indicate that the magnetic coupling between Mn^{II} and Mo^I ions is antiferromagnetic.

There has been a great interest in a preparation of new molecule-based magnets.¹⁻⁶ Prussian blue analogs comprise one of the most attractive classes of molecule-based magnets, some of which show high Curie temperature (T_c).⁷⁻⁹ For example, Verdaguer et al. have reported that $V[Cr(CN)_6]_{0.86} \cdot 2.8H_2O$ exhibited a spontaneous magnetization with $T_c = 315$ K.⁹ In addition, their common face-centered cubic (fcc) structures allow us easily to understand the superexchange interactions among transition metal ions.⁷⁻¹¹ Furthermore, we have developed various functional magnets composed of Prussian blue analogs, *ex.*, photomagnets,^{12,13} colored magnetic thin films,¹⁴ and a magnet flipping its magnetic pole twice.¹⁵ For these Prussian blue analogs, the first transition series element ions such as chromium and iron ions are mainly used as their precursors $[A(CN)_6]^{n-}$, where A is a transition metal ion. In the present work, we focus our attention on a new type of building blocks incorporating molybdenum ion. The first molybdenum polycyanide has recently reported in the system of $Mn^{II}_{2}(H_2O)_5[Mo^III(CN)_7] \cdot nH_2O$ ($S_{Mo} = 5/2$, $S_{Mn} = 1/2$) by Kahn et al.^{16,17} This compound shows a parallel spin ordering with $T_c = 51$ K and a strong magnetic anisotropy. A heptacyanomolybdenate(III) ion is used as its precursor in this compound and hence its structure is a ladder type, not a cubic type. The object of the present work is to prepare a cubic type of a molybdenum polycyanide exhibiting a spontaneous magnetization. For this attempt, we have chosen a

pentacyanonitrosylmolybdate ion, $[Mo^I(CN)_5(NO)]^{3-}(4d^5, S = 1/2)$, as a building block. We here report the synthesis and magnetic properties of this new Prussian blue analog, $K_{0.9}Mn^{II}_{1.05}[Mo^I(CN)_5(NO)] \cdot 5H_2O \cdot 1.9MeOH$ (1).

The compound 1 was obtained by the oxidation of $K_4[Mo^0(CN)_5(NO)] \cdot 2H_2O$ ¹⁸ with $Mn(ClO_4)_2 \cdot nH_2O$.¹⁹ Its elemental analyses were carried out by standard microanalytical methods and inductively coupled plasma optical emission. Under our typical experimental conditions,¹⁹ the formula for 1 was $K_{0.9}Mn^{II}_{1.05}[Mo^I(CN)_5(NO)] \cdot 5H_2O \cdot 1.9MeOH$. Note that the fraction of Mn^{II} and Mo^I in the prepared compound slightly depended on the mixing ratio of the starting materials. The X-ray diffraction patterns of this compound showed the fcc structure with a lattice constant of 10.72 Å (Figure 1). In addition, the CN and NO stretching frequencies in the IR spectra were observed at 2127 cm^{-1} and 1649 cm^{-1} , respectively. This NO stretching frequency is different from that of a free $[Mo^I(CN)_5(NO)]^{3-}$ ion ($\nu_{NO} = 1585$ cm^{-1}).²⁰ All these data show that a cubic type of molybdenum polycyanide containing $Mo^I\text{-NO}\text{-}Mn^{II}$ bridges is obtained.

The field-cooled magnetization *vs.* temperature plots for 1 in the external magnetic field of 10 G showed an abrupt break at $T_c = 39$ K (Figure 2). The magnetization against the external magnetic field showed that the saturation magnetization (I_s) value was 3.8 μ_B per the obtained formula of 1, assuming the *g* factor of 2.0 (Figure 3). When this compound is a ferrimagnet, the I_s value should be 4.3 μ_B . The observed I_s value is close to this calculated value, and hence this observed I_s value suggests that the magnetic coupling between $Mo^I(4d^5, S = 1/2)$ and $Mn^{II}(3d^5, S = 5/2)$ is antiferromagnetic. In addition, the $\chi_M T$ *vs.* *T* plots had a minimum value around 255 K and then approached infinity at T_c . This type of $\chi_M T$ *vs.* *T* curve also indicates that this compound is a ferrimagnet. The coercive field (H_c) was 14 G at 5 K. This small H_c value is due to the isotropy of magnetic orbitals of a Mn^{II} ion in octahedral surroundings.

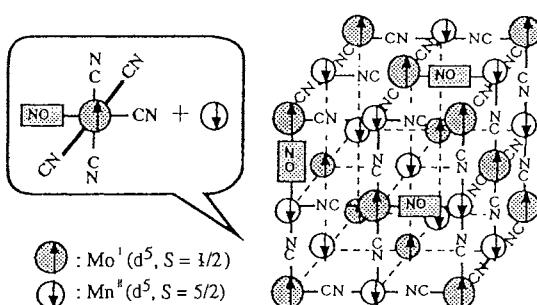


Figure 1. Schematic illustration of $K_{0.9}Mn_{1.05}[Mo(CN)_5(NO)] \cdot 5H_2O \cdot 1.9MeOH$ (1).

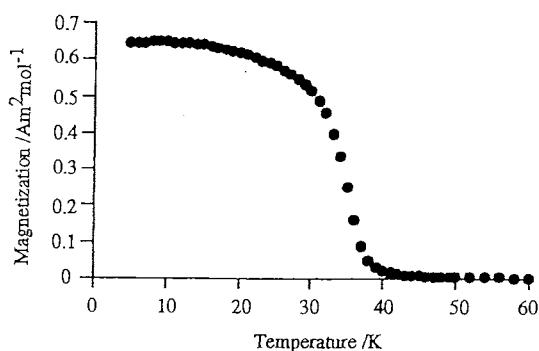


Figure 2. Field-cooled magnetization (FCM) curve for 1 (field = 10^{-3} T).

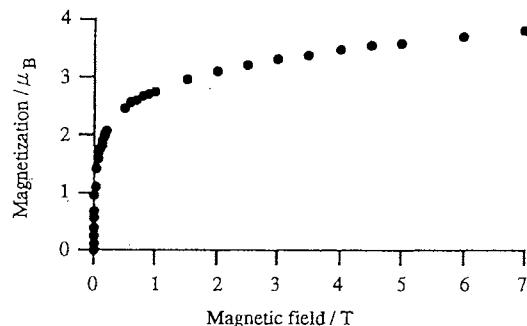
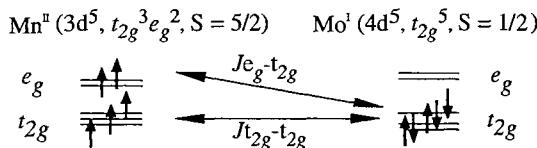



Figure 3. Field dependence of the magnetization at 5 K for 1.

Next, let us consider the origin of the antiferromagnetic interaction between Mn^{II} and Mo^I ions (J_{MnMo}) of this system. The point group of each metal ion for 1 is close to Oh group due to its fcc structure. Therefore, the d -orbitals of Mn^{II} and Mo^I split into e_g and t_{2g} orbitals and unpaired electrons occupy these orbitals as follows.

In this unpaired electron configuration, several superexchange pathways among unpaired electrons exist. These pathways are roughly divided into two categories. One is the antiferromagnetic contribution ($J_{t_{2g}-t_{2g}}$) between t_{2g} (Mn^{II}) and t_{2g} (Mo^I) magnetic orbitals, and the other is the ferromagnetic contribution ($J_{e_g-t_{2g}}$) between e_g (Mn^{II}) and t_{2g} (Mo^I) magnetic orbitals. Usually, the absolute value of $J_{t_{2g}-t_{2g}}$ is much larger than the $J_{e_g-t_{2g}}$ value.²¹ Therefore, the sum of these two contributions could be negative; $J_{MnMo} = J_{t_{2g}-t_{2g}} + J_{e_g-t_{2g}} < 0$, resulting that the superexchange interaction between Mn^{II} and Mo^I is antiferromagnetic.

We can estimate this J_{MnMo} value, which is the weight average of five CN bridged and one NO bridged superexchange interactions. For Prussian blue analogs, the magnitude of the superexchange interaction relates to the T_c value.¹¹ Using this relationship, we evaluated the J_{MnMo} value of -2.7 cm^{-1} . This value is as large as the J_{MnCr} value of -2.3 cm^{-1} for $K_{0.5}Mn^{II}[Cr^I(CN)_5(NO)]_{0.83} \cdot 4H_2O \cdot 1.5MeOH$ ²². This suggests that the $[Mo^I(CN)_5(NO)]^{3-}$ candidate is not less useful than the $[Cr^I(CN)_5(NO)]^{3-}$ candidate as a building block to obtain high T_c Prussian blue analog-based magnets.

In summary, we have succeeded in preparing a new type of Prussian blue based magnet containing Mo-NO-Mn bridges. The superexchange interaction between Mn^{II} and Mo^I was estimated to be -2.7 cm^{-1} . For this system, the ferromagnetic and antiferromagnetic contributions compete with each other. Therefore, when we choose a $Ni^{II}(t_{2g}^6 e_g^2)$ or a $Cu^{II}(t_{2g}^6 e_g^3)$ ion

instead of a Mn^{II} ion, only the ferromagnetic contribution operates to the superexchange interaction and hence ferromagnets can be obtained. Conversely, when we choose a $V^{II}(t_{2g}^3)$ or a $Cr^{II}(t_{2g}^4)$ ion, only the antiferromagnetic contribution operates, and hence we can obtain higher T_c ferrimagnets. In addition, it is known that a nitroprusside ion, $[Fe^{II}(CN)_5(NO)]^{2-}$, exhibits photo-induced charge transfer.²³⁻²⁵ Hence, the present compound may show a photo-induced magnetization change. The works under these lines are under way.

References and Notes

- D. Gatteschi, O. Kahn, J. S. Miller, and F. Palacio, "Magnetic Molecular Materials," Kluwer, Dordrecht (1991).
- O. Kahn, "Molecular Magnetism," VCH, New York (1993).
- J. S. Miller and A. J. Epstein, *Angew. Chem. Int. Ed. Engl.*, **33**, 385 (1994).
- K. Awaga, T. Inabe, U. Nagashima, and Y. Maruyama, *J. Chem. Soc. Chem. Commun.*, **1989**, 1617.
- R. Kumai, M. M. Matsushita, A. Izuoka, and T. Sugawara, *J. Am. Chem. Soc.*, **116**, 4523 (1994).
- H. Tamaki, Z. J. Zhong, N. Matsumoto, S. Kida, M. Koikawa, N. Achiwa, Y. Hashimoto, and H. Okawa, *J. Am. Chem. Soc.*, **114**, 6974 (1992).
- T. Mallah, S. Thiebaut, M. Verdaguer, and P. Veillet, *Science*, **262**, 1554 (1993).
- R. E. William and G. S. Girolami, *Inorg. Chem.*, **33**, 5165 (1994).
- S. Ferlay, T. Mallah, R. Ouahès, P. Veillet, and M. Verdaguer, *Nature*, **378**, 701 (1995).
- M. Nishino, S. Kubo, Y. Yoshioka, A. Nakamura, and K. Yamaguchi, *Mol. Cryst. Liq. Cryst.*, **305**, 109 (1997).
- S. Ohkoshi, T. Iyoda, A. Fujishima, and K. Hashimoto, *Phys. Rev. B*, **56**, 11642 (1997).
- O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto, *Science*, **272**, 704 (1996).
- S. Ohkoshi, S. Yorozu, O. Sato, T. Iyoda, A. Fujishima, and K. Hashimoto, *Appl. Phys. Lett.*, **70**, 1040 (1997).
- S. Ohkoshi, A. Fujishima, and K. Hashimoto, *J. Am. Chem. Soc.*, **120**, 5349 (1998).
- S. Ohkoshi, Y. Abe, A. Fujishima, and K. Hashimoto, *Phys. Rev. Lett.*, **82**, 1285 (1999).
- J. Larionova, J. Sanchiz, S. Gohlen, L. Ouahab, and O. Kahn, *Chem. Commun.*, **1998**, 953.
- J. Larionova, R. Clérac, J. Sanchiz, O. Kahn, S. Gohlen, and L. Ouahab, *J. Am. Chem. Soc.*, **120**, 13088 (1998).
- W. Hieber, R. Nast, and G. Gehring, *Z. Anorg. Allg. Chem.*, **256**, 167 (1948).
- The compound 1 was prepared by the reaction of $K_4[Mo(CN)_5(NO)] \cdot 2H_2O$ with 4 equiv. of $NaClO_4 \cdot H_2O$, 1.2 equiv. of pyridinium tribromide, and 4 equiv. of $Mn(ClO_4)_2 \cdot nH_2O$ in $H_2O/MeOH$ (1:1, v/v) under Ar atmosphere. The obtained compound 1 was a brown powder. Found: C, 16.8; H, 3.7; N, 17.0%; K, 6.8; Mn, 11.2; Mo, 18.6. Calcd for $C_{6.9}H_{17.6}K_{0.9}Mn_{1.02}MoN_6O_{7.9}$: C, 16.58; H, 3.55; N, 16.82%; K, 7.04; Mn, 11.54; Mo, 19.19. FT-IR spectrum of 1 was recorded on a Shimadzu FT-IR 8200PC spectrometer. The powder X-ray diffraction was measured using a Rigaku PW 1400 powder diffractometer. Magnetization measurements were carried out using a Quantum Design MPMS 7S superconducting quantum interference device (SQUID) magnetometer.
- K. Wiegardt, G. B. Dahmann, W. Swiridoff, and J. Weiss, *Inorg. Chem.*, **22**, 1221 (1983).
- A. P. Ginsberg, *Inorg. Chim. Acta. Rev.*, **5**, 45 (1971).
- S. M. Holmes and G. S. Girolami, *Mol. Cryst. Liq. Cryst.*, **305**, 279 (1997).
- U. Hauser, V. Oestreich, and H. D. Rohrweck, *Z. Phys. A*, **A280**, 17 (1977).
- Th. Woike, W. Krasser, and P. S. Bechthold, *Phys. Rev. Lett.*, **53**, 1767 (1984).
- Z.-Z. Gu, O. Sato, T. Iyoda, K. Hashimoto, and A. Fujishima, *Chem. Mater.*, **9**, 1092 (1997).